L. E. Muijres, Jorick S. Vink, A. de Koter, P. E. Mueller, N. Langer
Mass loss forms an important aspect of the evolution of massive stars, as
well as for the enrichment of the surrounding ISM. Our goal is to predict
accurate mass-loss rates and terminal wind velocities. These quantities can be
compared to empirical values, thereby testing radiation-driven wind models. One
specific issue is that of the "weak-wind problem", where empirically derived
mass-loss rates fall orders of magnitude short of predicted values. We employ
an established Monte Carlo model and a recently suggested new line acceleration
formalism to solve the wind dynamics consistently. We provide a new grid of
mass-loss rates and terminal wind velocities of O stars, and compare the values
to empirical results. Our models fail to provide mass-loss rates for
main-sequence stars below a luminosity of log(L/Lsun) = 5.2, where we run into
a fundamental limit. At luminosities below this critical value there is
insufficient momentum transferred in the region below the sonic point to
kick-start the acceleration. This problem occurs at the location of the onset
of the weak-wind problem. For O dwarfs, the boundary between being able to
start a wind, and failing to do so, is at spectral type O6/O6.5. The direct
cause of this failure is a combination of the lower luminosity and a lack of Fe
V lines at the wind base. This might indicate that another mechanism is
required to provide the necessary driving to initiate the wind. For stars more
luminous than log(L/Lsun) = 5.2, our new mass-loss rates are in excellent
agreement with the mass-loss prescription by Vink et al. 2000. This implies
that the main assumption entering the method of the Vink et al. prescriptions -
i.e. that the momentum equation is not explicitly solved for - does not
compromise the reliability of the Vink et al. results for this part of
parameter space (Abridged).
View original:
http://arxiv.org/abs/1112.0944
No comments:
Post a Comment