Tuesday, December 6, 2011

1112.0321 (Ryan C. Hickox et al.)

The LABOCA Survey of the Extended Chandra Deep Field South: Clustering of submillimetre galaxies    [PDF]

Ryan C. Hickox, J. L. Wardlow, Ian Smail, A. D. Myers, D. M. Alexander, A. M. Swinbank, A. L. R. Danielson, J. P. Stott, S. C. Chapman, K. E. K. Coppin, J. S. Dunlop, E. Gawiser, D. Lutz, P. van der Werf, A. Weiss
We present a measurement of the spatial clustering of submillimetre galaxies (SMGs) at z = 1-3. Using data from the 870 micron LESS survey, we employ a novel technique to measure the cross-correlation between SMGs and galaxies, accounting for the full probability distributions for photometric redshifts of the galaxies. From the observed projected two-point cross-correlation function we derive the linear bias and characteristic dark matter (DM) halo masses for the SMGs. We detect clustering in the cross-correlation between SMGs and galaxies at the > 4 sigma level. For the SMG autocorrelation we obtain r_0 = 7.7 (+1.8,-2.3) h^-1 Mpc, and derive a corresponding DM halo mass of log(M_halo [h^-1 M_sun]) = 12.8 (+0.3,-0.5). Based on the evolution of DM haloes derived from simulations, we show that that the z = 0 descendants of SMGs are typically massive (~2-3 L*) elliptical galaxies residing in moderate- to high-mass groups (log(M_halo [h^-1 M_sun]) = 13.3 (+0.3,-0.5). From the observed clustering we estimate an SMG lifetime of ~100 Myr, consistent with lifetimes derived from gas consumption times and star-formation timescales, although with considerable uncertainties. The clustering of SMGs at z ~ 2 is consistent with measurements for optically-selected quasi-stellar objects (QSOs), supporting evolutionary scenarios linking starbursts and QSOs. Given that SMGs reside in haloes of characteristic mass ~ 6 x 10^12 h^-1 M_sun, we demonstrate that the redshift distribution of SMGs can be described remarkably well by the combination of two effects: the cosmological growth of structure and the evolution of the molecular gas fraction in galaxies. We conclude that the powerful starbursts in SMGs likely represent a short-lived but universal phase in massive galaxy evolution, associated with the transition between cold gas-rich, star-forming galaxies and passively evolving systems. [Abridged]
View original: http://arxiv.org/abs/1112.0321

No comments:

Post a Comment