Tuesday, December 6, 2011

1112.0566 (S. Martín et al.)

Surviving the hole I: Spatially resolved chemistry around Sgr A*    [PDF]

S. Martín, J. Martín-Pintado, M. Montero-Castaño, P. T. P. Ho, R. Blundell
The interstellar region within the few central parsecs around the super-massive black hole, Sgr A* at the very Galactic center is composed by a number of overlapping molecular structures which are subject to one of the most hostile physical environments in the Galaxy. We present high resolution (4"x3"~0.16x0.11 pc) interferometric observations of CN, 13CN, H2CO, SiO, c-C3H2 and HC3N emission at 1.3 mm towards the central ~4 pc of the Galactic center region. Strong differences are observed in the distribution of the different molecules. The UV resistant species CN, the only species tracing all previously identified circumnuclear disk (CND) structures, is mostly concentrated in optically thick clumps in the rotating filaments around Sgr A*. H2CO emission traces a shell-like structure that we interpret as the expansion of Sgr A East against the 50 km/s and 20 km/s giant molecular clouds (GMCs). We derive isotopic ratios 12C/13C~15-45 across most of the CND region. The densest molecular material, traced by SiO and HC3N, is located in the southern CND. The observed c-C3H2/HC3N ratio observed in the region is more than an order of magnitude lower than in Galactic PDRs. Toward the central region only CN was detected in absorption. Apart from the known narrow line-of-sight absorptions, a 90 km/s wide optically thick spectral feature is observed. We find evidences of an even wider (>100 km/s) absorption feature. Around 70-75% of the gas mass, concentrated in just the 27% densest molecular clumps, is associated with rotating structures and show evidences of association with each of the arcs of ionized gas in the mini-spiral structure. Chemical differentiation has been proven to be a powerful tool to disentangle the many overlapping molecular components in this crowded and heavily obscured region.
View original: http://arxiv.org/abs/1112.0566

No comments:

Post a Comment