A. I. Gómez-Ruiz, A. Gusdorf, S. Leurini, C. Codella, R. Güsten, F. Wyrowski, M. A. Requena-Torres, C. Risacher, S. F. Wampfler
We present and analyze two spectrally resolved high-J CO lines towards the molecular outflow Cep E, driven by an intermediate-mass class 0 protostar. Using the GREAT receiver on board SOFIA, we observed the CO (12--11) and (13--12) transitions (E_u ~ 430 and 500 K, respectively) towards one position in the blue lobe of this outflow, that had been known to display high-velocity molecular emission. We detect the outflow emission in both transitions, up to extremely high velocities (~ 100 km/s with respect to the systemic velocity). We divide the line profiles into three velocity ranges that each have interesting spectral features: standard, intermediate, and extremely high-velocity. One distinct bullet is detected in each of the last two. A large velocity gradient analysis for these three velocity ranges provides constraints on the kinetic temperature and volume density of the emitting gas, >~ 100 K and > ~ 10^4 cm^-3, respectively. These results are in agreement with previous ISO observations and are comparable with results obtained by Herschel for similar objects. We conclude that high-J CO lines are a good tracer of molecular bullets in protostellar outflows. Our analysis suggests that different physical conditions are at work in the intermediate velocity range compared with the standard and extremely high-velocity gas at the observed position.
View original:
http://arxiv.org/abs/1203.1890
No comments:
Post a Comment