Monday, June 3, 2013

1305.7365 (S. C. O. Glover et al.)

Molecular cooling in the diffuse interstellar medium    [PDF]

S. C. O. Glover, P. C. Clark
We use a simple one-zone model of the thermal and chemical evolution of interstellar gas to study whether molecular hydrogen (H2) is ever an important coolant of the warm, diffuse interstellar medium (ISM). We demonstrate that at solar metallicity, H2 cooling is unimportant and the thermal evolution of the ISM is dominated by metal line cooling. At metallicities below 0.1 Z_solar, however, metal line cooling of low density gas quickly becomes unimportant and H2 can become the dominant coolant, even though its abundance in the gas remains small. We investigate the conditions required in order for H2 to dominate, and show that it provides significant cooling only when the ratio of the interstellar radiation field strength to the gas density is small. Finally, we demonstrate that our results are insensitive to changes in the initial fractional ionization of the gas or to uncertainties in the nature of the dust present in the low-metallicity ISM.
View original: http://arxiv.org/abs/1305.7365

No comments:

Post a Comment