Yang Chen, Ping Zhou, You-Hua Chu
We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R_b \approx 1.21M/Msun - 8.98 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 Msun will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.
View original:
http://arxiv.org/abs/1304.5126
No comments:
Post a Comment