Thursday, April 18, 2013

1304.4793 (T. -C. Peng et al.)

Acetone in Orion BN/KL - High-resolution maps of a special oxygen-bearing molecule    [PDF]

T. -C. Peng, D. Despois, N. Brouillet, A. Baudry, C. Favre, A. Remijan, A. Wootten, T. L. Wilson, F. Combes, G. Wlodarczak
As one of the prime targets of interstellar chemistry study, Orion BN/KL clearly shows different molecular distributions between large nitrogen- (e.g., C2H5CN) and oxygen-bearing (e.g., HCOOCH3) molecules. However, acetone (CH3)2CO, a special complex O-bearing molecule, has been shown to have a very different distribution from other typical O-bearing molecules in the BN/KL region. We searched for acetone within our IRAM Plateau de Bure Interferometer 3 mm and 1.3 mm data sets. Twenty-two acetone lines were searched within these data sets. The angular resolution ranged from 1.8 X 0.8 to 6.0 X 2.3 arcsec^2, and the spectral resolution ranged from 0.4 to 1.9 km s-1. Nine of the acetone lines appear free of contamination. Three main acetone peaks (Ace-1, 2, and 3) are identified in Orion BN/KL. The new acetone source Ace-3 and the extended emission in the north of the hot core region have been found for the first time. An excitation temperature of about 150 K is determined toward Ace-1 and Ace-2, and the acetone column density is estimated to be 2-4 X 10^16 cm-2 with a relative abundance of 1-6 X 10^-8 toward these two peaks. Acetone is a few times less abundant toward the hot core and Ace-3 compared with Ace-1 and Ace-2. We find that the overall distribution of acetone in BN/KL is similar to that of N-bearing molecules, e.g., NH3 and C2H5CN, and very different from those of large O-bearing molecules, e.g., HCOOCH3 and (CH3)2O. Our findings show the acetone distribution is more extended than in previous studies and does not originate only in those areas where both N-bearing and O-bearing species are present. Moreover, because the N-bearing molecules may be associated with shocked gas in Orion BN/KL, this suggests that the formation and/or destruction of acetone may involve ammonia or large N-bearing molecules in a shocked-gas environment.
View original: http://arxiv.org/abs/1304.4793

No comments:

Post a Comment