Wednesday, August 1, 2012

1110.1635 (K. Belczynski et al.)

Missing Black Holes Unveil The Supernova Explosion Mechanism    [PDF]

K. Belczynski, G. Wiktorowicz, C. Fryer, D. Holz, V. Kalogera
It is firmly established that the stellar mass distribution is smooth, covering the range 0.1-100 Msun. It is to be expected that the masses of the ensuing compact remnants correlate with the masses of their progenitor stars, and thus it is generally thought that the remnant masses should be smoothly distributed from the lightest white dwarfs to the heaviest black holes. However, this intuitive prediction is not borne out by observed data. In the rapidly growing population of remnants with observationally determined masses, a striking mass gap has emerged at the boundary between neutron stars and black holes. The heaviest neutron stars reach a maximum of two solar masses, while the lightest black holes are at least five solar masses. Over a decade after the discovery, the gap has become a significant challenge to our understanding of compact object formation. We offer new insights into the physical processes that bifurcate the formation of remnants into lower mass neutron stars and heavier black holes. Combining the results of stellar modeling with hydrodynamic simulations of supernovae, we both explain the existence of the gap, and also put stringent constraints on the inner workings of the supernova explosion mechanism. In particular, we show that core-collapse supernovae are launched within 100-200 milliseconds of the initial stellar collapse, implying that the explosions are driven by instabilities with a rapid (10-20 ms) growth time. Alternatively, if future observations fill in the gap, this will be an indication that these instabilities develop over a longer (>200 milliseconds) timescale.
View original: http://arxiv.org/abs/1110.1635

No comments:

Post a Comment