Nicolaos D. Caranicolas, Euaggelos E. Zotos
We study the nature of motion in a 3D potential composed of perturbed elliptic oscillators. Our technique is to use the results obtained from the 2D potential in order to find the initial conditions generating regular or chaotic orbits in the 3D potential. Both 2D and 3D potentials display exact periodic orbits together with extended chaotic regions. Numerical experiments suggest, that the degree of chaos increases rapidly, as the energy of the test particle increases. About 97% of the phase plane of the 2D system is covered by chaotic orbits for large energies. The regular or chaotic character of the 2D orbits is checked using the S(c) dynamical spectrum, while for the 3D potential we use the S(c) spectrum, along with the P(f) spectral method. Comparison with other dynamical indicators shows that the S(c) spectrum gives fast and reliable information about the character of motion.
View original:
http://arxiv.org/abs/1206.5394
No comments:
Post a Comment