Friday, March 16, 2012

1203.3412 (F. Fontani et al.)

Temperature and kinematics of protoclusters with intermediate and high-mass stars: the case of IRAS 05345+3157    [PDF]

F. Fontani, P. Caselli, Q. Zhang, J. Brand, G. Busquet, Aina Palau
We have mapped at small spatial scales the temperature and the velocity field in the protocluster associated with IRAS 05345+3157, which contains both intermediate-/high-mass protostellar candidates and starless condensations, and is thus an excellent location to investigate the role of massive protostars on protocluster evolution. We observed the ammonia (1,1) and (2,2) inversion transitions with the VLA. Ammonia is the best thermometer for dense and cold gas, and the observed transitions have critical densities able to trace the kinematics of the intracluster gaseous medium. The ammonia emission is extended and distributed in two filamentary structures. The starless condensations are colder than the star-forming cores, but the gas temperature across the whole protocluster is higher (by a factor of ~1.3-1.5) than that measured typically in both infrared dark clouds and low-mass protoclusters. The non-thermal contribution to the observed line broadening is at least a factor of 2 larger than the expected thermal broadening even in starless condensations, contrary to the close-to-thermal line widths measured in low-mass quiescent dense cores. The NH3-to-N2H+ abundance ratio is greatly enhanced (a factor of 10) in the pre--stellar core candidates, probably due to freeze-out of most molecular species heavier than He. The more massive and evolved objects likely play a dominant role in the physical properties and kinematics of the protocluster. The high level of turbulence and the fact that the measured core masses are larger than the expected thermal Jeans masses indicate that turbulence likely was an important factor in the initial fragmentation of the parental clump.
View original: http://arxiv.org/abs/1203.3412

No comments:

Post a Comment