H. D. Nissen, N. J. Cunningham, M. Gustafsson, J. Bally, J. -L. Lemaire, C. Favre, D. Field
The fast outflow emerging from a region associated with massive star formation in the Orion Molecular Cloud 1 (OMC-1), located behind the Orion Nebula, appears to have been set in motion by an explosive event. Here we study the structure and dynamics of outflows in OMC-1. We combine radial velocity and proper motion data for near-IR emission of molecular hydrogen to obtain the first 3-dimensional (3D) structure of the OMC-1 outflow. Our work illustrates a new diagnostic tool for studies of star formation that will be exploited in the near future with the advent of high spatial resolution spectro-imaging in particular with data from the Atacama Large Millimeter Array (ALMA). We use published radial and proper motion velocities obtained from the shock-excited vibrational emission in the H2 v=1-0 S(1) line at 2.122 $\mu$m obtained with the GriF instrument on the Canada-France-Hawaii Telescope, the Apache Point Observatory, the Anglo-Australian Observatory and the Subaru Telescope. These data give the 3D velocity of ejecta yielding a 3D reconstruction of the outflows. This allows one to view the material from different vantage points in space giving considerable insight into the geometry. Our analysis indicates that the ejection occurred <720 years ago from a distorted ring-like structure of ~15" (6000 AU) in diameter centered on the proposed point of close encounter of the stars BN, source I and maybe also source n. We propose a simple model involving curvature of shock trajectories in magnetic fields through which the origin of the explosion and the centre defined by extrapolated proper motions of BN, I and n may be brought into spatial coincidence.
View original:
http://arxiv.org/abs/1203.3056
No comments:
Post a Comment