Xi Chen, Simon P. Ellingsen, Jin-Hua He, Ye Xu, Cong-Gui Gan, Zhi-Qiang Shen, Tao An, Yan Sun, Bing-Gang Ju
We report a survey with the Purple Mountain Observatory (PMO) 13.7-m radio telescope for class I methanol masers from the 95 GHz (8_0 - 7_1 A^+) transition. The 214 target sources were selected by combining information from both the Spitzer GLIMPSE and 1.1 mm BGPS survey catalogs. The observed sources satisfy both the GLIMPSE mid-IR criteria of [3.6]-[4.5]>1.3, [3.6]-[5.8]>2.5, [3.6]-[8.0]>2.5 and 8.0 um magnitude less than 10, and also have an associated 1.1 mm BGPS source. Class I methanol maser emission was detected in 63 sources, corresponding to a detection rate of 29% for this survey. For the majority of detections (43), this is the first identification of a class I methanol maser associated with these sources. We show that the intensity of the class I methanol maser emission is not closely related to mid-IR intensity or the colors of the GLIMPSE point sources, however, it is closely correlated with properties (mass and beam-averaged column density) of the BGPS sources. Comparison of measures of star formation activity for the BGPS sources with and without class I methanol masers indicate that the sources with class I methanol masers usually have higher column density and larger flux density than those without them. Our results predict that the criteria log(S_{int})<-38.0+1.72log(N_{H_{2}}^{beam}) and log(N_{H_{2}}^{beam})>22.1, which utilizes both the integrated flux density (S_{int}) and beam-averaged column density (N_{H_{2}}^{beam}) of the BGPS sources, are very efficient for selecting sources likely to have an associated class I methanol maser. Our expectation is that searches using these criteria will detect 90% of the predicted number of class I methanol masers from the full BGPS catalog (~ 1000), and do so with a high detection efficiency (~75%).
View original:
http://arxiv.org/abs/1202.6478
No comments:
Post a Comment