R. P. Breton, V. M. Kaspi, M. A. McLaughlin, M. Lyutikov, M. Kramer, I. H. Stairs, S. M. Ransom, R. D. Ferdman, F. Camilo, A. Possenti
The double pulsar PSR J0737-3039A/B displays short, 30 s eclipses that arise
around conjunction when the radio waves emitted by pulsar A are absorbed as
they propagate through the magnetosphere of its companion pulsar B. These
eclipses offer a unique opportunity to probe directly the magnetospheric
structure and the plasma properties of pulsar B. We have performed a
comprehensive analysis of the eclipse phenomenology using multi-frequency radio
observations obtained with the Green Bank Telescope. We have characterized the
periodic flux modulations previously discovered at 820 MHz by McLaughlin et
al., and investigated the radio frequency dependence of the duration and depth
of the eclipses. Based on their weak radio frequency evolution, we conclude
that the plasma in pulsar B's magnetosphere requires a large multiplicity
factor (~ 10^5). We also found that, as expected, flux modulations are present
at all radio frequencies in which eclipses can be detected. Their complex
behavior is consistent with the confinement of the absorbing plasma in the
dipolar magnetic field of pulsar B as suggested by Lyutikov & Thompson and such
a geometric connection explains that the observed periodicity is harmonically
related to pulsar B's spin frequency. We observe that the eclipses require a
sharp transition region beyond which the plasma density drops off abruptly.
Such a region defines a plasmasphere which would be well inside the
magnetospheric boundary of an undisturbed pulsar. It is also two times smaller
than the expected standoff radius calculated using the balance of the wind
pressure from pulsar A and the nominally estimated magnetic pressure of pulsar
B.
View original:
http://arxiv.org/abs/1201.2637
No comments:
Post a Comment