D. Kunneriath, A. Eckart, S. N. Vogel, P. Teuben, K. Muzic, R. Schoedel, M. Garcia-Marin, J. Moultaka, J. Staguhn, C. Straubmeier, J. A. Zensus, M. Valencia-S., V. Karas
The mini-spiral is a feature of the interstellar medium in the central ~2 pc
of the Galactic center. It is composed of several streamers of dust and ionised
and atomic gas with temperatures between a few 100 K to 10^4 K. There is
evidence that these streamers are related to the so-called circumnuclear disk
of molecular gas and are ionized by photons from massive, hot stars in the
central parsec. We attempt to constrain the emission mechanisms and physical
properties of the ionized gas and dust of the mini-spiral region with the help
of our multiwavelength data sets. Our observations were carried out at 1.3 mm
and 3 mm with the mm interferometric array CARMA in California in March and
April 2009, with the MIR instrument VISIR at ESO's VLT in June 2006, and the
NIR Br-gamma with VLT NACO in August 2009. We present high resolution maps of
the mini-spiral, and obtain a spectral index of 0.5 for Sgr A*, indicating an
inverted synchrotron spectrum. We find electron densities within the range
0.8-1.5x10^4 cm-3 for the mini-spiral from the radio continuum maps, along with
a dust mass contribution of ~0.25 solar masses from the MIR dust continuum, and
extinctions ranging from 1.8-3 at 2.16 micron in the Br-gamma line. We observe
a mixture of negative and positive spectral indices in our 1.3 mm and 3 mm
observations of the extended emission of the mini-spiral, which we interpret as
evidence that there are a range of contributions to the thermal free-free
emission by the ionized gas emission and by dust at 1.3 mm.
View original:
http://arxiv.org/abs/1201.2362
No comments:
Post a Comment