1204.1497 (Harry Desmond)
Harry Desmond
The baryonic Tully-Fisher Relation (TFR) is a tight relationship observed between baryonic mass and rotational velocity in spiral galaxies. Providing a theoretical basis for the TFR in the Cold Dark Matter (CDM) paradigm has proved problematic: simple calculations suggest too low a slope and too high a scatter. This paper aims to develop a rigorous prediction for the relation in the context of CDM by accounting for all relevant TFR-independent effects observed in numerical simulations of dark matter haloes, including their expected scatter. It is demonstrated that consistent treatment of these effects goes a large way towards reconciling the CDM prediction with the data; the normalisation becomes almost perfect, athough the slope remains somewhat too low. The predicted scatter is indeed too large, but may be reduced to near that of the data by accouting for observational selection effects.
View original:
http://arxiv.org/abs/1204.1497
No comments:
Post a Comment